[image: image1.jpg]¢ei





Transaction processing

Date
05/2021 – 01/2022
Project
Platform for managing and processing applications for federal administrative services
Industry
Ministry of the Interior

Activity
Architecture, implementation

Description
The federal government's administrative portal is intended to provide citizens and companies with centralized, convenient access to all federal government services. The services of the federal states and local authorities will also be accessible via the connection to the portal network. The project pursues a holistic solution for citizens, companies and public authorities.
The individual applications were implemented in a hexagonal service architecture.
The transaction processing serves the administration and processing of applications submitted by citizens within the authorities.

Execution 
Linux (Ubuntu)
Java 17, Spring, Spring Boot
Kubernetes, Docker
REST, Jackson
Hibernate 5, Oracle DB, H2, domain-driven design, hexagonal architecture
Cloud
MinIO, MapStruct, Micrometer, Lombok, Feign, Resilience4J, Testcontainers, OpenTracing, AOP, Mockito
Junit 5, AssertJ, JSONAssert
IDE: IntelliJ 2020
Vorgehensmodell: Scrum
Tools: Maven, GitLab
VCS: git
Document service

Date
10/2020 – 05/2021
Project
Platform to manage documents applied for federal administrative services

Industry
Ministry of the Interior

Activity
Architecture, implementation

Description
The federal administration portal is designed to provide citizens and companies with central and convenient access to all federal administration services. The services of the federal states and municipalities will also be accessible via the connection to the portal network. The project pursues a holistic solution for citizens, companies and authorities.
The individual applications were implemented in a hexagonal service architecture.
In this environment it is necessary to manage uploaded and generated documents securely. A document service was developed for this purpose. This service accepts documents without offering them for immediate download. Only when these are marked as final by the management software, they can be downloaded by the user for a limited time with an access key. Temporarily uploaded documents are cyclically deleted from the system.

Execution 
Linux (Ubuntu)
Java 14, Spring, Spring Boot
Kubernetes, Docker
REST, Jackson
Hibernate 5, Oracle DB, H2, domain-driven design, hexagonal architecture
Cloud
MinIO, MapStruct, Micrometer, Lombok, Feign, Resilience4J, Testcontainers, OpenTracing, AOP, Mockito
Junit 5, AssertJ, JSONAssert
IDE: IntelliJ 2020
Vorgehensmodell: Scrum
Tools: Maven, GitLab
VCS: git
Request for service

Date
02/2020 – 10/2020
Project
Platform for applying for federal administrative services
Industry
Ministry of the Interior
Activity
Architecture, implementation

Description
The federal administration portal is designed to provide citizens and companies with central and convenient access to all federal administration services. The services of the federal states and municipalities will also be accessible via the connection to the portal network. The project pursues a holistic solution for citizens, companies and authorities.
The individual applications were implemented in a hexagonal service architecture.
The service application is used to provide forms for citizens to apply for a service. An administration of these applications is provided for the authority to process the procedures.
Execution 
Linux (Ubuntu)
Java 14, Spring, Spring Boot
Kubernetes, Docker
REST, Jackson
Hibernate 5, Oracle DB, H2, domain-driven design, hexagonal architecture
Cloud
MinIO, MapStruct, Micrometer, Lombok, Feign, Resilience4J, Testcontainers, OpenTracing, AOP, Mockito
Junit 5, AssertJ, JSONAssert
IDE: IntelliJ 2020
Vorgehensmodell: Scrum
Tools: Maven, GitLab
VCS: git
Optimization of persistence layer by multi-tenancy
Date
06/2019 – 12/2019
Project
Platform for sending messages

Industry
Commerce

Activity
Architecture, implementation

Description
An existing platform for sending messages is provided with a message agnostic component from some microservices (subscription services) with use case specific events to generate messages.
The subscription storage service is responsible for the persistence of unknown events (in Json format). The events are defined by use case (topic) in the topic management service and are read by Kafka and stored in a PostgreSQL along with their unique topic identifier. The subscription processing service processes the different topics time-controlled by queries to the subscription storage service. It enriches the data with requests to further services and forwards them to the central message platform for dispatch.
The increase in use cases has led to a considerable increase in the volume of data (about 250 million rows), which means that the execution of DB queries is becoming increasingly slower. After all access optimizations had been exhausted, we decided to split the data and introduce a multi tenancy architecture in the persistence layer. The tenant is a topic. Since the number of topics is increasing, the dedicated assignment of one DB instance per topic is not possible. Therefore, a separate DB schema is used for each topic to keep the indices for the queries small.
The main requirement of the multi tenancy component is a simple integration into the existing subscription storage service. I used the support of Hibernate which was bound to annotations by AspectJ to select the tenant. Everything is integrated nearly automatically into Spring Boot.
After the data migration, first comparisons of the query execution speeds showed an increase of at least a factor of 10.

Execution 
Linux (Ubuntu)
Java 8/11, Spring, Spring Boot
Amazon AWS, EC2
Docker
REST, Jackson
Hibernate 5, PostgreSQL, H2, redis, RabbitMQ (AMQP), Kafka (Nakadi)
event driven architecture, domain-driven design, hexagonal architecture
Cloud
Mockito
Junit 4/5, Hamcrest, AssertJ
IDE: IntelliJ 2018
Vorgehensmodell: Scrum
Tools: Maven, GitHub Enterprise
VCS: git

Advertisement campaign management
Date
03/2019 – 05/2019

Project
Service to manage campaigns for advertisements
Industry
Commerce
Activity
Architecture, implementation

Description
Architecture and implementation of a microservices for the management of advertising campaigns. The microservice is responsible for the master data of the campaigns and controls the generation of the relevant customer segment by another microservice. It has a state machine that controls the status of the individual campaigns. The states are also updated by the segmentation service via news. The segmentation service sends a status update to the campaign management to update the status at the beginning of the sending of messages from relevant customers to the processing platform and at the end of the sending.
The microservices are based on Spring Boot. Communication is via REST, AMQP and Kafka (encapsulated by Nakadi).

Execution
Linux (Ubuntu)
Java 8/11, Spring, Spring Boot
Amazon AWS, EC2
Docker
REST, Jackson
Hibernate 5, PostgreSQL, H2, redis, RabbitMQ (AMQP), Kafka (Nakadi)
event driven architecture, domain-driven design, hexagonal architecture
Cloud
Mockito
Junit, Hamcrest, AssertJ
IDE: IntelliJ 2019
Vorgehensmodell: Scrum
Tools: Maven, GitHub Enterprise
VCS: git

Employee Information Service
Date
01/2019 – 03/2019
Project
Backend service to determine various employee relevant dates
Industry
Car repair service
Activity
Architecture, implementation
Description
New development of a Spring Boot based microservices to determine employee related data from different backend systems. The data is provided at different REST endpoints. Since the backend systems use a different business key to the REST endpoints, a CSV dump is provided from a legacy system. This is read in cyclically by Quartz and stored as mapping in a PostgreSQL. The employee information is then determined from an Oracle DB or via SOAP/REST from other backend systems.

Execution
Linux 
Java 11, Spring, Spring Boot
Kubernetes
Docker, Docker compose
Quartz, REST, Jackson
Hibernate 5, PostgreSQL, Oracle DB, H2
Cloud
Mockito
Junit, AssertJ
IDE: IntelliJ 2018
Vorgehensmodell: Kanban
Tools: Maven, Jira, Bitbucket 
VCS: git

Form e-mail service

Date
12/2018 – 01/2019
Project
Backend service for sending form data by e-mail
Industry
Car repair service
Activity
Architecture, implementation
Description
New development of a Spring Boot based micro service for sending form data via eMail. The data is accepted at a REST endpoint and sent to various recipients based on various rules in different formats. As template engine thymeleaf was used.
Execution
Linux 
Java 11, Spring, Spring Boot
Kubernetes
Docker, Docker compose
REST, Jackson
Cloud
Mockito
Junit, AssertJ
IDE: IntelliJ 2018
Vorgehensmodell: Kanban
Tools: Maven, Jira, Bitbucket 
VCS: git

Online appointment service

Date
10/2018 – 12/2018
Project
Online appointment service
Industry
Car repair service
Activity
Architecture, implementation
Description
Architecture and implementation of new features of an online appointment service through Spring Boot based microservices. The communication of the microservices is based on REST and Kafka. Data is persisted in PostgreSQL.
Execution
Linux 
Java 11, Spring, Spring Boot
Kubernetes
Docker, Docker compose
REST, Jackson
Hibernate 5, PostgreSQL, H2, Kafka
Cloud
Mockito
Junit, AssertJ
IDE: IntelliJ 2018
Vorgehensmodell: Kanban
Tools: Maven, Jira, Bitbucket 
VCS: git

Communication platform

Date
04/2017 – 09/2018
Project
Platform for sending messages
Industry
Commerce
Activity
Architecture, implementation
Description
Architecture and implementation of new features for a message driven communication platform based on Spring Boot. The platform is a microservice architecture communicating itself via REST and AMQP. Therefore a templating system is used to simplify the efford of the clients to send messages as only a minimum payload is required. The rendering of a message occurs inside the platform depending on the target channel of a message. Supported channels are SMS, push (iOS and Android), e-mail, Facebook Messenger and letter. Every channel supports a rich number of KPIs for tracking of each message.
Execution
Apple / macOS / Linux
Java 8, Spring, Spring Boot
Amazon AWS, EC2
Docker
REST, Jackson
Hibernate 5, PostgreSQL, H2, redis, RabbitMQ (AMQP)
Cloud
Mockito
Junit, Hamcrest, AssertJ
IDE: IntelliJ 2018
Vorgehensmodell: Scrum
Tools: Maven, GitHub Enterprise
VCS: git

Rewrite message service rubbergram

Date
02/2018 – …
Project
Rewrite of web application for sending one-way messages. 
rubbergram.com

Industry
Social web

Activity
Idea, design, implementation

Description
Simple possibility for sending one-way messages being destroyed automatically when read by recipient. Ability for pictures as attachments.
When the message is created, a link is generated which must be communicated to the recipient. If the recipient calls the link, the message is deleted from the server, so that it can only be read once.
Microservice architecture: message store, authorization/authentication, frontend
Execution
PC / Windows, Ubuntu Linux
IntelliJ IDEA 2018
Java 8
Spring Boot 2, Spring Security, Spring JPA, Spring Cloud Sleuth, Spring Actuator
JPA2, Hibernate 5, HikariCP, Flyway 5, PostgreSQL 10
Jackson, MapStruct 2
Logback, Micrometer
AssertJ, Mockito
Thymeleaf 2, custom dialect, Bootstrap, jQuery

Features
Dispatch of Tect and pictures.
Notification of the sender when reading the message.
Multi-language support.
Support of X-Forwarded-* headers for operation behind a reverse proxy for SSL termination.
Blocking the ad when sending the link via Facebook Messenger, so that the message is not destroyed.
User administration; registered users can use additional features.
User registration, recaptcha integration.
Sending of multipart MimeMessage (plain text, html) eMails to activate the account after activation and read confirmations. For this the already existing e-mail server is used as relay.
Feature switches with different activation strategies (user group, spring boot profile, administrator function). Integration into Thymeleaf through custom dialect. Server-side integration through annotation using AspectJ.
Administrator functions: Overview of messages, current user sessions, administration of registrations, administration of feature switches for current user sessions (also anonymous).
Connection pooling for message store and auth-service.
Distributed tracing.

Operation
Metrics by Prometheus, Grafana
Logging by Filebeat, Elastic Search, Kibana
Docker compose for orchestration of all containers (PostgreSQL, message-store, auth-service, frontend, Filebeat, Elastic Search, Grafana, Kibana, Prometheus).

DevOp
GitLab, GitLab CI/CD

Search engine optimization and improvements of community platform
Date
09/2016 – 03/2017
Project
Euroe’ s largest car and motor community

Industry
Community

Activity
Architecture, implementation
Description
Architecture and implementation of new fetures and a bit bug fixing of Spring based community platform.
Architecture and implementation of a sitelist for search engines like Google based on Spring Boot running on company cloud.
Scheduling is run with Spring. For synchronization of instances redis is used. Client loadbalancing was realized with ribbon. Servicediscovery is done by consul. For Logging I used the ELK stack (Elastic search, Logstash, Kibana).
Execution
Apple / macOS / Linux
Java 8, Spring, Spring Boot
Stripes, JSP, JSTL
REST, Jackson
mySQL, MyBatis, redis, Elasticsearch, Logstash, Kibana, ribbon, consul
Cloud
Mockito
REST-Assured
JUnit, Hamcrest
IDE: IntelliJ 2017
Team organization: Scrum
Tools: JIRA, Team City, Confluence, Maven
VCS: git

Backend for advertising campaign management for Brandshops

Date
08/2015 – 09/2016
Project
Web application for advertising campaign management
Industry
Advertising
Activity
Architecture, implementation
Description
Architecture and implementation of a new application from scratch.
Realization as microservices based on Spring Boot running within a Docker container on AWS EC2.
Connecting Google Double Click and Metrigo for „onsite“ and „sponsored products“ advertisement. Scheduling is controlled by Quartz. Messages are send through Amazon SQS.
Execution
PC / Windows / Linux
Java 8, Spring Boot
REST, Jackson
Hibernate 4, JPA, PostgreSQL, H2
Quartz
Amazon AWS, SQS, EC2
Docker
OAuth2
Mockito
REST-Assured
Swagger
JUnit, Hamcrest
Grafana2
IDE: IntelliJ 2016
Team organisation: Kanban
Tools: JIRA, Jenkins, Confluence, Trello, Maven, STUPS
VCS: git

Administration of master data for accounting system
Date
05/2015 – 08/20015
Project
Web application for administration of master data of accounting system
Industry
Energy provider
Activity
Analysis, design, implementation
Description
Implementation of central services for master data administration. For this belonging properties, buildings, metering points, and meters.
Execution
PC / Windows
Java 7, JEE 6
REST, Soap
JMS
Hibernate 4, mySQL
Orika
Querydsl
Mockito
IntelliJ 14
AngularJS, jQuery
Grunt, Bower
Wildfly 8
Team organisation: Scrum
Tools: JIRA, Jenkins, Confluence, Maven
VCS: svn
Message service rubbergram

Date
10/2014 – 12/2014
Project
Web application for sending one-way messages. 
rubbergram.com

Industry
Social web

Activity
Idea, design, implementation
Description
Simple possibility for sending one-way messages being destroyed automatically when read by recipient. Ability for attachments.
Execution
PC / Windows, Ubuntu Linux
JavaScript, HTML
Eclipse 4.3
Java 7, JEE 6, Servlet, JSF 2, Wildfly 8.1
Hibernate 4, MySQL
Scrum
Contract management for insurance
Date
08/2008 – 03/2015
Project
Internal application for managing contracts used by customer service
Industry
Insurance
Activity
Analytics, design, implementation
Description
Implementation of administrative functions for existing web based contract management system.
Execution
PC / Windows, UNIX / AIX
JavaScript, HTML
Eclipse 3.7, 4.4
SVN, Maven, Ant, Jenkins
Java 6, 7, 8, JEE 6, Servlet, EJB2, EJB3
Struts, JSP, JSF, RESTEasy
JBoss 6, Wildfly 8
MQ, Hibernate 4, IBM DB2 9
extreme Programming, Scrum
Projectverwaltung mittels JIRA
Modul
Migration

Creating a concept for taking over and migrating existing data from a foreign inventory management system into existing system. Therefore a BPM engine should be taken as a framework. The realization was done with REST services (RESTEasy). There are two parts for that process. The first is responsible for transformation of data structures to legacy data structures and the second for contributing to legacy persistence layer.
Modul
Proposal management
Goal was to create an independent component for revisional proposal management. Likewise the option for introducing a new GUI technology should consist. Therefore the business logic was realized using EJB 3. The connection to the contract management component (using EJB 2) was implemented by creating a process layer with EJB 3. This layer is responsible for consistency in both components.
Modul
JSF Prototype
To estimate the effort of migrating from Struts to JSF a prototype was built. It used as far as possible existing beans.
Modul
C/S separation
The original application had a lack in client server separation making it nearly impossible to have a working transaction handling. As the GUI directly uses the persistence entities a transformation to DTO objects for usage within beans was created. The server side transformed them back to entities. So a working transaction handling could be implemented.
Modul
Enhanced exception handling
Updating from EJB 2 to EJB 3 brought new possibilities in exception handling. Central beans are only allowed to throw exceptions annotated with @ApplicationException having a root class with attribute rollback=true. This makes handling transactions easier.
Modul
Enhanced persistence layer
Dimensions with unities – amount of money have to be persisted in Euro even though access by its classes also have to provide values in Cent. A flexible embeddable type for hibernate was created to solve this requirement.
Modul
Component for functional validation
Context depending data have to be validated on front end as well as on backend in the same manner. A component was created being able to simply use it within JSTL and as well in central validation of the system.
